

NASA Mars Cubesat/Nanosat Workshop JPL/Caltech, Pasadena CA

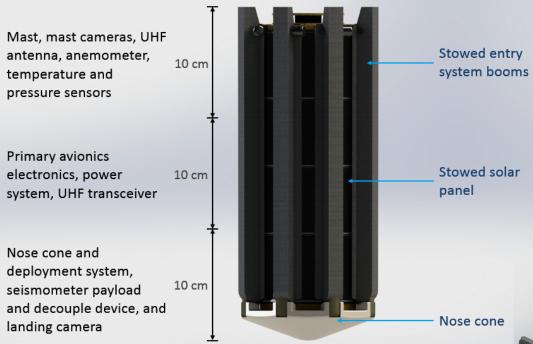
Dandelander Mission Concept

Michael Malin, Malin Space Science Systems Tomas Svitek, Stellar Exploration Inc

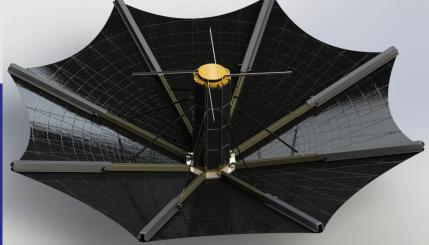
November 20, 2014

Mission Goals and Objectives

- Mission goal is to simultaneously reduce cost/risk of deep space science missions
 - Qualify low cost technologies for deep space missions
 - Demonstrate, in flight, specific, new, enabling technologies
- Mission objectives of proposed mission concept
 - Demonstrate that modern small satellite technology can be leveraged for deep space applications
 - Qualify new, simple EDL process to enable deployment of multiple, low cost small planetary landers
 - Examine alternative risk/benefit approach to deep space missions, predicated on use of multiple low cost systems not all of which need to survive for complete mission success
 - Acquire high-value science using low cost technologies


Right Risk / Reward Opportunity

- Affordable!
- nanoADEPT also designated as "1-m ADEPT"
 - Low-cost Mars EDL system to deliver scientifically useful payload
 - Based on ADEPT (Adaptable Deployment Entry and Placement Technology)
 - Customized for Mars entry
 - Mechanically deployable hypersonic decelerator
 - Low areal mass carbon fabric and rib structure
 - No propulsion system and no parachute
- Proximity-1 Micro-Transceiver
 - Bootstraps AstroDev development of Lithium UHF transceiver
 - Operates at up to 4 W RF (PAE~35%), 70 g, 10 x 5 x 1 cm
- Geophone-based Seismometer



Stowed and Deployed Entry System

Entry system:

- Cone angle of 70°
- 60+ cm diameter

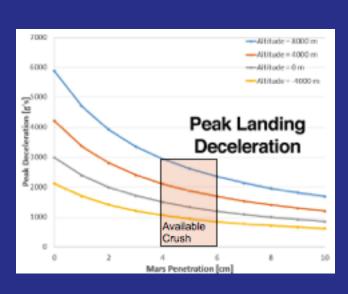

Surface Science Payload

Instrument	Description
Seismometer	Geophone: 1-1000 Hz Isolated from structure
Anemometer	<i>Ultrasonic, 3 axis</i> 0-75 m/sec ± 2%, 0-360° ± 1°
Pressure	Barocap 1-1150 ± 3 Pa
Temperature	150-300 ± 0.1 K
Cameras (12 Mpixel)	Four horizontal One solar/sky 90°x70° One descent 90°x70°

- Geophone measures ground velocity rather the its derivative (acceleration)
- Detection limit at ~ -144 dB

 (at 1000 km, 1E14 Nm source moment,
 6 dB detection limit and 1 Hz rate)

 Mast extends to ~1 m above surface



Entry and Landing Parameters

- Dynamically stable through all aerodynamic regimes
 - Including transonic (to be tested)
- Acceptable terminal velocity
- Worts-case impact shock estimated for ground cover area assumptions (bedrock/cobbles/boulders ~20%)
- System can land successfully on ~80% of Mars surface at average elevation
- Limiting impact shock <3,000 G's
- Experienced-based design rules show how both electronics and mechanisms can survive these shock levels
- Additional mitigations being examined

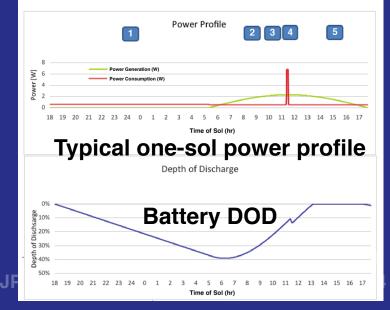
Mass and Data Budgets

Lander system entry mass:

ITEM	ESTIMATE
Payload	840 g
Telecom	100 g
Power	220 g
Entry	1450 g
Structure	1220 g
CD&H	60 g
Margin (27%)	1100 g
Total	5000 g

Data Return from Each Lander:

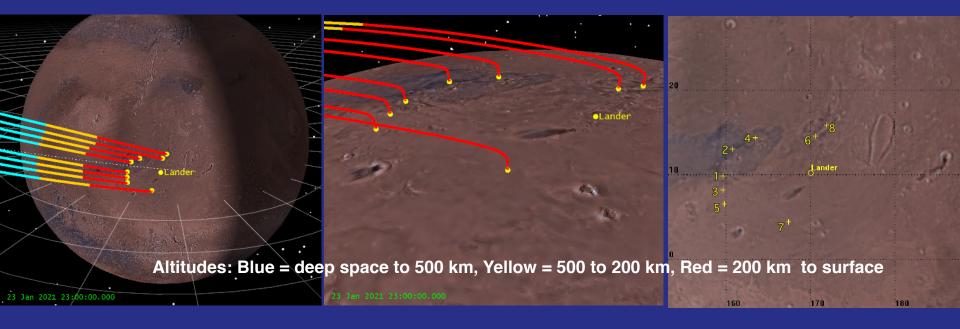
DATA BUDGET		
Data generation	Mbit / day	
Seismometer	213	
Cameras	17	
Other science	2	
Telemetry	1.4	
Total	~230	
Data uplink	480 sec @ 512 kbps	
	1 pass / day	


Power / Energy

- Telecom dominates power
- Existing power-efficient techniques result in ~1-2 W operations
- <200 mW is allocated to heating
- Nominal mode payload operation, housekeeping/power management
- Imaging occurs daily
- Transmission of data occurs every sol
- Energy generation exceeds storage

Operational mode	Safe-hold	Nominal	Imaging	Transmit
Payload		<0.1 W	1.3 W	<0.1 W
Housekeeping	0.4 W	0.4 W	0.5 W	5.8 W
Power overhead	0.1 W	0.1 W	0.3 W	0.9 W
Total	0.5 W	0.6 W	2.1 W	6.8 W

Power Assumptions	
Cell type/number	LILT TJ x 32
Dust degration	25%
Latitude	35 deg S
Lander tilt angle	<15 deg


Day in Life				
Mode Number	Power Mode	Duration	Consumption (W)	
1	Nominal	12:19:47	0.516	
2	Nominal	6:00:00	0.516	
3	Imaging	0:01:00	2.367	
4	Transmit	0:08:00	6.820	
5	Nominal	6:10:47	0.516	

Deployment Description

- Vehicles released 10 or more days before landing
 - Avoids conflicts with primary 2020 vehicle during approach and landing
- Separation depends on deployer spring constant and time of release
 - Example shows 4 different spring constants (0.25, 0.5, 0.75, 1.0 m/sec)
 - Deployed 10 days out in 4 pairs, separated by 1 hr
 - Results in 600 km dispersion
- Assuming 2x spring constant & 20 day deployment, separation ~2400 km

Risk Posture and Success Criteria

Risk	Mitigation
Mission assurance and part selection strategy	Early planning. Mission success definiton and expectations. Rely on industry-accepted methodology
EDL stability	Leverage NASA ADEPT effort including Earth-based testing
Landing impact shock and wind stability	Integrated system approach to minimize sensitive parts. Early test verification
Decoupling geophone from lander	Utilize Leidos expertise to properly design sensor interface. Early test verification

- Mission performance floor
 - One lander (out of n) landing and operating
- Science performance floor
 - Two landers to successfully land and operate
- One Mars year is needed to return full suite of observations
- For uncorrelated failures with 40% probability of occurrence
 - 4 landers provide a 98%
 probability of engineering
 success and 86% of meeting the
 science floor